What are all the zeroes of #f(x) = 2x^3 - 5x^2 + 3x - 1#?
1 Answer
The Real root of
#x_1 = 1/6 (5 + root(3)(44+3sqrt(177))+root(3)(44-3sqrt(177)))#
and Complex roots as below...
Explanation:
Given:
#f(x) = 2x^3-5x^2+3x-1#
First substitute
Then:
#2t^3 = 2(x-5/6)^3 = 2(x^3-5/2x^2+25/12x-125/216)#
#=2x^3-5x^2+25/6x-125/108#
#-7/6t = -7/6x+35/36 = -7/6x+105/108#
#2t^3-7/6t = 2x^3-5x^2+3x-5/27#
So:
#2t^3-7/6t-22/27 = 2x^3-5x^2+3x-1 = f(x)#
Multiply through by
#108t^3-63t-44 = 54 f(x)#
So we want to solve:
#108t^3-63t-44 = 0#
Use Cardano's method, letting
#0 = 108(u+v)^3-63(u+v)-44#
#= 108u^3+108v^3+(324uv-63)(u+v)-44#
#= 108u^3+108v^3+9(36uv-7)(u+v)-44#
Next make the coefficient of the
#= 108u^3+108(7/(36u))^3-44#
#= 108u^3+343/(432u^3)-44#
Multiply through by
#46656(u^3)^2-19008(u^3)+343 = 0#
Then using the quadratic formula:
#u^3 = (19008+-sqrt(19008^2-4*46656*343))/(2*46656)#
#= (19008+-sqrt(361304064-64012032))/93312#
#= (19008+-sqrt(297292032))/93312#
#= (19008+-1296 sqrt(177))/93312#
#= (44+-3sqrt(177))/216#
Since the derivation was symmetric in
Hence the Real root is:
#t = root(3)((44+3sqrt(177))/216)+root(3)((44-3sqrt(177))/216)#
#= 1/6 (root(3)(44+3sqrt(177))+root(3)(44-3sqrt(177)))#
and hence:
#x_1 = 5/6 + t = 1/6 (5 + root(3)(44+3sqrt(177))+root(3)(44-3sqrt(177)))#
The Complex roots are:
#x_2 = 1/6 (5 + omega root(3)(44+3sqrt(177))+omega^2 root(3)(44-3sqrt(177)))#
#x_3 = 1/6 (5 + omega^2 root(3)(44+3sqrt(177))+omega root(3)(44-3sqrt(177)))#
where