We have f=X^3-3X^2+1;How to find x_1^(-4)+x_2^(-4)+x_3^(-4)?; x_1,x_2,x_3 are roots of f(x)=0.

2 Answers
May 10, 2017

x_1^(-4)+x_2^(-4)+x_3^(-4) = 18

Explanation:

We have:

f(x) = x^3-3x^2+1

color(white)(f(x)) = (x-x_1)(x-x_2)(x-x_3)

color(white)(f(x)) = x^3-(x_1+x_2+x_3)x^2+(x_1x_2+x_2x_3+x_3x_1)x-x_1x_2x_3

So:

{(x_1+x_2+x_3 = 3), (x_1x_2+x_2x_3+x_3x_1 = 0), (x_1x_2x_3 = -1):}

Note that:

x_1^(-4)+x_2^(-4)+x_3^(-4)

can be written as a rational function of symmetric polynomials:

x_1^(-4)+x_2^(-4)+x_3^(-4)=(x_2^4x_3^4+x_3^4x_1^4+x_1^4x_2^4)/(x_1^4x_2^4x_3^4)

Then:

x_2^4x_3^4+x_3^4x_1^4+x_1^4x_2^4" " and " "x_1^4x_2^4x_3^4

are expressible in terms of the elementary symmetric polynomials (whose values we already know):

{(x_1+x_2+x_3 = 3), (x_1x_2+x_2x_3+x_3x_1 = 0), (x_1x_2x_3 = -1):}

We find:

x_1^2+x_2^2+x_3^2 = (x_1+x_2+x_3)^2-2(x_1x_2+x_2x_3+x_3x_1)

color(white)(x_1^2+x_2^2+x_3^2) = color(blue)(3)^2-2(color(blue)(0))

color(white)(x_1^2+x_2^2+x_3^2) = color(green)(9)

x_1^2x_2^2+x_2^2x_3^2+x_3^2x_1^2 = (x_1x_2+x_2x_3+x_3x_1)^2-2(x_1+x_2+x_3)x_1x_2x_3

color(white)(x_1^2x_2^2+x_2^2x_3^2+x_3^2x_1^2) = (color(blue)(0))^2-2(color(blue)(3))(color(blue)(-1))

color(white)(x_1^2x_2^2+x_2^2x_3^2+x_3^2x_1^2) = color(green)(6)

x_1^2x_2^2x_3^2 = (x_1x_2x_3)^2 = (color(blue)(-1))^2 = color(green)(1)

Then:

x_2^4x_3^4+x_3^4x_1^4+x_1^4x_2^4

=(x_1^2x_2^2+x_2^2x_3^2+x_3^2x_1^2)^2 - 2(x_1^2+x_2^2+x_3^2)(x_1^2x_2^2x_3^2)

=(color(green)(6))^2-2(color(green)(9))(color(green)(1))

=36-18

=color(red)(18)

x_1^4x_2^4x_3^4 = (x_1^2x_2^2x_3^2)^2 = (color(green)(1))^2 = color(red)(1)

So:

x_1^(-4)+x_2^(-4)+x_3^(-4)=color(red)(18)/color(red)(1) = 18

May 11, 2017

See below.

Explanation:

From f we have

{(x_1+x_2+x_3=-3),(x_1x_2+x_1x_2+x_2x_3=0),(x_1x_2x_3=1):}

Calling y_1=1/x_1,y_2=1/x_2,y_3=1/x_3 we have

{(y_1+y_2+y_3=(x_1x_2+x_1x_2+x_2x_3)/(x_1x_2x_3)=0),(y_1y_2+y_1y_3+y_2y_3=(x_1+x_2+x_3)/(x_1x_2x_3) =3 ),(y_1y_2y_3=1/(x_1x_2x_3)=1):}

so the polynomial

Y^3+3Y+1

has as roots, the inverses of f's

Now taking

(y_1+y_2+y_3)^2 = y_1^2+y_2^2+y_3^2+2(y_1y_2+y_1y_3+y_2y_3)

or

0=y_1^2+y_2^2+y_3^2+2y_1y_2y_3(x_1+x_2+x_3)

so

y_1^2+y_2^2+y_3^2-6=0

or

y_1^2+y_2^2+y_3^2=6 and now

(y_1^2+y_2^2+y_3^2)^2=y_1^4+y_2^4+y_3^4+2(y_1^2y_2^2+y_1^2y_3^2+y_2^2y_3^2)

or

36 = y_1^4+y_2^4+y_3^4+2y_1^2y_2^2y_3^2(x_1^2+x_2^2+x_3^2)

but x_1^2+x_2^2+x_3^2=9 and y_1^2y_2^2y_3^2=1

so finally

36 = y_1^4+y_2^4+y_3^4+18 an then

y_1^4+y_2^4+y_3^4 = 18 = 1/x_1^4+1/x_2^4+1/x_3^4