Let #vecA=(l,1,0). vecB=(0,m,1) and vecC=(1,0,n)#
We are given that #vecAxxvecB, and, vecBxxvecC# are parallel.
We know, from Vector Geometry, that
#vecx# #||# #vecy iff (vecx)xx(vecy)=vec0#
Utilising this for our #||# vectors, we have,
#(vecAxxvecB) xx (vecBxxvecC)=vec0..................(1)#
Here, we need the following Vector Identity :
#vecu xx (vecv xx vecw)=(vecu*vecw)vecv-(vecu*vecv)vecw#
Applying this in #(1)#, we find,
#{(vecAxxvecB)*vecC}vecB-{(vecAxxvecB)*vecB}vecC=vec0...(2)#
Using #[..., ..., ...]# Box Notation for writing the Scalar Triple Product appearing as the first term in #(2)# above, and, noticing that the second term in #(2)# vanishes because of #vecA xx vecB bot vecB#, we have,
#[vecA, vecB, vecC]vecB=vec0#
#rArr [vecA, vecB, vecC]=0, or, vecB=vec0#
But, #vecB != vec0#, (even if m=0), so, we must have,
#[vecA, vecB, vecC]=0#
#rArr# #|(l,1,0),(0,m,1),(1,0,n)|=0#
#rArr l(mn-0)-1(0-1)+0=0#
#rArr lmn+1=0#
Q.E.D.
I enjoyed proving this. Didn't you?! Enjoy Maths!