Using the definition of convergence, how do you prove that the sequence {2^ -n}{2n} converges from n=1 to infinity?

1 Answer
Nov 30, 2016

Use the properties of the exponential function to determine N such as |2^(-n)-2^(-m)| < epsilon2n2m<ε for every m,n > Nm,n>N

Explanation:

The definition of convergence states that the {a_n}{an} converges if:

AA epsilon > 0 " " EE N: AA m,n>N " " |a_n-a_m| < epsilonε>0 N:m,n>N |anam|<ε

So, given epsilon >0ε>0 take N > log_2(1/epsilon)N>log2(1ε) and m,n > Nm,n>N with m < nm<n

As m < nm<n, (2^(-m) - 2^(-n) )> 0(2m2n)>0 so |2^(-m) - 2^(-n)| = 2^(-m) - 2^(-n)2m2n=2m2n

2^(-m) - 2^(-n) = 2^(-m)(1- 2^(m-n))2m2n=2m(12mn)

Now as 2^x2x is always positive, (1- 2^(m-n) ) < 1(12mn)<1, so

2^(-m) - 2^(-n) < 2^(-m) 2m2n<2m

And as 2^(-x)2x is strictly decreasing and m > N > log_2(1/epsilon)m>N>log2(1ε)

2^(-m) - 2^(-n) < 2^(-m) < 2^(-N) < 2^(-log_2(1/epsilon)2m2n<2m<2N<2log2(1ε)

But:

2^(-log_2(1/epsilon) )= 2^(log_2(epsilon)) = epsilon2log2(1ε)=2log2(ε)=ε

So:

|2^(-m) - 2^(-n)| < epsilon2m2n<ε

Q.E.D.