Using t=tan(1/2theta)t=tan(12θ), how do you prove that (tan2alpha+cotalpha)/(tan2alpha-tanalpha)=cot^2alphatan2α+cotαtan2αtanα=cot2α?

2 Answers
May 30, 2018

We use tan(2x)=2tan(x)/(1-tan^2(x))tan(2x)=2tan(x)1tan2(x)

Explanation:

Using the formula above we get
(2tan(x)/(1-tan^2(x))+1/tan(x))/(2tan(x)/(1-tan^2(x))--tan(x))2tan(x)1tan2(x)+1tan(x)2tan(x)1tan2(x)tan(x)
Multiplying numerator and denominator by
1-tan^2(x)1tan2(x)

we get

(2tan(x)+((1-tan^2(x))/tan(x)))/(2tan(x)-tan(x)(1-tan^2(x))2tan(x)+(1tan2(x)tan(x))2tan(x)tan(x)(1tan2(x))
multiplying numerator and denominator by

tan(x)tan(x)
(2tan^2(x)+1-tan^2(x))/(2tan^2(x)-tan^2(x)(1-tan^2(x))2tan2(x)+1tan2(x)2tan2(x)tan2(x)(1tan2(x))
and this is

(tan^2(x)+1)/(tan^2(x)(1+tan^2(x)))=cot^2(x)tan2(x)+1tan2(x)(1+tan2(x))=cot2(x)

May 30, 2018

Please see below.

Explanation:

We know that,

color(red)((1)cos(A-B)=cosAcosB+sinAsinB(1)cos(AB)=cosAcosB+sinAsinB

color(blue)((2)sin(A-B)=sinAcosB-cosAsinB(2)sin(AB)=sinAcosBcosAsinB

Here,

(tan2alpha+cotalpha)/(tan2alpha-tanalpha)=cot^2alphatan2α+cotαtan2αtanα=cot2α

We take,

LHS=(tan2alpha+cotalpha)/(tan2alpha-tanalpha)LHS=tan2α+cotαtan2αtanα

color(white)(LHS)= ((sin2alpha)/(cos2alpha)+cosalpha/sinalpha)/((sin2alpha)/(cos2alph a)-sinalpha/cosalpha)LHS=sin2αcos2α+cosαsinαsin2αcos2alphasinαcosα

color(white)(LHS)= ((sin2alphasinalpha+cos2alphacosalpha)/(cancelcos2alphasinalpha ))/((sin2alphacosalpha- cos2alphasinalpha)/(cancelcos2alphacosalpha

color(white)(LHS)= (color(red)((cos2alphacosalpha+sin2alphasinalpha))xxcosalpha)/(color(blue)((sin2alphaco salpha-cos2alphasinalpha))xxsinalpha

Using (1) and(2), we get

LHS=(color(red)(cos(2alpha-alpha))xxcosalpha)/(color(blue)(sin(2alpha- alpha))xxsinalpha)

color(white)(LHS)=(cosalphaxxcosalpha)/(sinalphaxxsinalpha)

color(white)(LHS)=cos^2alpha/sin^2alpha

color(white)(LHS)=cot^2alpha

LHS=RHS