We know that,
color(red)((1)cos(A-B)=cosAcosB+sinAsinB(1)cos(A−B)=cosAcosB+sinAsinB
color(blue)((2)sin(A-B)=sinAcosB-cosAsinB(2)sin(A−B)=sinAcosB−cosAsinB
Here,
(tan2alpha+cotalpha)/(tan2alpha-tanalpha)=cot^2alphatan2α+cotαtan2α−tanα=cot2α
We take,
LHS=(tan2alpha+cotalpha)/(tan2alpha-tanalpha)LHS=tan2α+cotαtan2α−tanα
color(white)(LHS)=
((sin2alpha)/(cos2alpha)+cosalpha/sinalpha)/((sin2alpha)/(cos2alph
a)-sinalpha/cosalpha)LHS=sin2αcos2α+cosαsinαsin2αcos2alpha−sinαcosα
color(white)(LHS)=
((sin2alphasinalpha+cos2alphacosalpha)/(cancelcos2alphasinalpha
))/((sin2alphacosalpha-
cos2alphasinalpha)/(cancelcos2alphacosalpha
color(white)(LHS)=
(color(red)((cos2alphacosalpha+sin2alphasinalpha))xxcosalpha)/(color(blue)((sin2alphaco
salpha-cos2alphasinalpha))xxsinalpha
Using (1) and(2), we get
LHS=(color(red)(cos(2alpha-alpha))xxcosalpha)/(color(blue)(sin(2alpha-
alpha))xxsinalpha)
color(white)(LHS)=(cosalphaxxcosalpha)/(sinalphaxxsinalpha)
color(white)(LHS)=cos^2alpha/sin^2alpha
color(white)(LHS)=cot^2alpha
LHS=RHS