We know that,
#color(red)((1)cos(A-B)=cosAcosB+sinAsinB#
#color(blue)((2)sin(A-B)=sinAcosB-cosAsinB#
Here,
#(tan2alpha+cotalpha)/(tan2alpha-tanalpha)=cot^2alpha#
We take,
#LHS=(tan2alpha+cotalpha)/(tan2alpha-tanalpha)#
#color(white)(LHS)=
((sin2alpha)/(cos2alpha)+cosalpha/sinalpha)/((sin2alpha)/(cos2alph
a)-sinalpha/cosalpha)#
#color(white)(LHS)=
((sin2alphasinalpha+cos2alphacosalpha)/(cancelcos2alphasinalpha
))/((sin2alphacosalpha-
cos2alphasinalpha)/(cancelcos2alphacosalpha#
#color(white)(LHS)=
(color(red)((cos2alphacosalpha+sin2alphasinalpha))xxcosalpha)/(color(blue)((sin2alphaco
salpha-cos2alphasinalpha))xxsinalpha#
Using #(1) and(2)#, we get
#LHS=(color(red)(cos(2alpha-alpha))xxcosalpha)/(color(blue)(sin(2alpha-
alpha))xxsinalpha)#
#color(white)(LHS)=(cosalphaxxcosalpha)/(sinalphaxxsinalpha)#
#color(white)(LHS)=cos^2alpha/sin^2alpha#
#color(white)(LHS)=cot^2alpha#
#LHS=RHS#