Using First Principal Prove the derivative ?

x^2sinxx2sinx = x(xcosx+2sinx)x(xcosx+2sinx)

1 Answer
Jun 20, 2018

Please see below.

Explanation:

Here.

f(x)=x^2sinx =>f(t)=t^2sintf(x)=x2sinxf(t)=t2sint

We know that,

f'(x)=lim_(t tox)(f(t)-f(x))/(t-x)

=lim_(t tox)(t^2sint-x^2sinx)/(t-x)

=lim_(t to x)(t^2sintcolor(red)(-x^2sint+x^2sint)-x^2sinx)/(t-x)...to(1)

=lim_(t tox)(sint(t^2-x^2)+x^2(sint-sinx))/(t-x)

=lim_(t tox){(sint(t^2-x^2))/(t-x)+(x^2(sint-sinx))/(t-x)}

=lim_(t tox){(sint(t-x)(t+x))/((t-x))+(x^2 *2cos((t+x)/2)sin((t- x)/2))/(t-x)}

=sinx(x+x)+2x^2cos((x+x)/2)lim_((t-x)/2 to0){sin((t-x)/2)/(2((t- x)/2))}

=2xsinx+2x^2cosx(1/2),...to[because lim_(theta to0) sintheta/theta=1

=2xsinx+x^2cosx

=x^2cosx+2xsinx

=x(xcosx+2sinx)

...........................................................................................

Note:

We can take tocolor(red)(-t^2sinx+t^2sinx into (1)

in place of tocolor(red)(-x^2sint+x^2sint)