Using De Moivre's Theorem, What is the indicated power of (-sqrt2 -sqrt2 i)^5?

Ok, so I've gotten to z=32[cos((25pi)/4)+isin((25pi)/4)], but my book says the answer is 16sqrt(2)+16sqrt(2)i, how do I get there?

1 Answer
Sep 12, 2017

(-sqrt2-isqrt2)^5

=(2(-1/sqrt2-ixx1/sqrt2))^5

=(2(-cos(pi/4)-ixxsin(pi/4))^5

=(2(cos(pi+pi/4)+ixxsin(pi+pi/4))^5

=(2(cos((5pi)/4)+ixxsin((5pi)/4))^5

=(2^5(cos((25pi)/4)+ixxsin((25pi)/4))

=(32(cos(6pi+pi/4)+ixxsin(6pi+pi/4))

=(32(cos(pi/4)+ixxsin(pi/4))

=32(1/sqrt2+ixx1/sqrt2)

=16sqrt2+16sqrt2i