Use the a) and b) to prove #hatT_L = e^(LhatD)# #(a)[hatT_L,hatD]=0# #(b)[hatx,hatT_L]=-LhatT_L# ?
Use these to prove
#[hatD,hatx]=hat1#
To show #[hatT_L,hatD]=0#
#f'(x-L)-f'(x-L) =0#
working for the first part is on https://socratic.org/questions/if-hatt-l-is-the-translation-operator-hatt-lf-x-f-x-l-and-hatx-is-hatxf-x-xf-x-t?commentevent_id=
Use these to prove
To show
working for the first part is on https://socratic.org/questions/if-hatt-l-is-the-translation-operator-hatt-lf-x-f-x-l-and-hatx-is-hatxf-x-xf-x-t?commentevent_id=
1 Answer
From whatever you're saying up there, all it looks like we're supposed to do is to show that
We will end up proving that using
#hatT_L -= e^(LhatD) = e^(ihatp_xL//ℏ)#
gives
#[hatD, hatx] -= [ihatp_x//ℏ, hatx] = 1#
and not
From part 1, we had shown that for this definition (that
#[hatx, hatT_L] = -LhatT_L# .
Since
Recall that in the proof shown in part 1, we had written:
#hatx(hatT_L f(x_0)) = ([hatx,hatT_L] + hatT_Lhatx)f(x_0)#
#= -LhatT_Lf(x_0) + hatT_Lhatxf(x_0)#
and that is where we would have to use it. All we have to do is Taylor expand the exponential operator and show that the above proof still holds.
[This is also shown in light detail here.](https://www3.nd.edu/~bjanko/p70007/qm1hw3answers.pdf) I expanded it to be more thorough...
#e^(LhatD) = sum_(n=0)^(oo) (LhatD)^(n)/(n!) = sum_(n=0)^(oo) 1/(n!) L^n (hatD)^n#
Give that
#[hatx, e^(LhatD)] = sum_(n=0)^(oo) {1/(n!)(L^n) [hatx, hatD^n]}#
Now, we proposed that
#[hatx, hatp_x]f(x) = -iℏx(df)/(dx) + iℏd/(dx)(xf(x))#
#= cancel(-iℏx(df)/(dx) + iℏx(df)/(dx)) + iℏf(x)#
so that
#color(blue)([hatD", " hatx]) = [(ihatp_x)/(ℏ),hatx]#
#= -[(hatp_x)/(iℏ),hatx] = -1/(iℏ)[hatp_x,hatx]#
#= -1/(iℏ) cdot -[hatx, hatp_x]#
#= -1/(iℏ) cdot-iℏ = color(blue)(1)#
From this, we further expand the commutator:
#[hatx, e^(ihatp_xL//ℏ)] = sum_(n=0)^(oo) {1/(n!)(L^n) [hatx, ((ihatp_x)/(ℏ))^n]}#
#= sum_(n=0)^(oo) {1/(n!)((iL)/(ℏ))^n [hatx, hatp_x^n]}#
Now, we know
#d^n/(dx^n)(xf(x)) = x(d^nf)/(dx^n) + n(d^(n-1)f)/(dx^(n-1))#
and that
#hatp_x^n = hatp_xhatp_xhatp_xcdots#
#= [(-iℏ)d/(dx)]^n = (-iℏ)^n (d^n)/(dx^n)#
so that:
#[hatx, hatp_x^n] = hatxhatp_x^n - hatp_x^nhatx#
#= x cdot (-iℏ)^n (d^n f)/(dx^n) - [(-iℏ)^n d^n/(dx^n)(xf(x))]#
#= (-iℏ)^nx(d^nf)/(dx^n) - [(-iℏ)^n(x(d^nf)/(dx^n) + n (d^(n-1)f)/(dx^(n-1)))]#
#= (-iℏ)^n{cancel(x(d^nf)/(dx^n)) - cancel(x(d^nf)/(dx^n)) - n(d^(n-1)f)/(dx^(n-1))}#
#= (-iℏ)^(n-1)(-iℏ)(-n (d^(n-1)f)/(dx^(n-1)))#
#= iℏn (-iℏ)^(n-1)(d^(n-1))/(dx^(n-1))[f(x)]#
We recognize that
#[hatx, hatp_x^n] = iℏnhatp_x^(n-1)# , provided#n >= 1# .
From this, we find:
#[hatx", " e^(ihatp_xL//ℏ)] = sum_(n=0)^(oo) {1/(n!)(L^n) [hatx, ((ihatp_x)/(ℏ))^n]}#
#= sum_(n=1)^(oo) {1/(n!)((iL)/(ℏ))^n iℏnhatp_x^(n-1)}#
where if you evaluate the
#= iℏ sum_(n=1)^(oo) [n/(n!) ((iL)/(ℏ))^n hatp_x^(n-1)]#
#= iℏ sum_(n=1)^(oo) [1/((n-1)!) ((iL)/ℏ)^(n-1)((iL)/ℏ)hatp_x^(n-1)]#
Here we are simply trying to make this look like the exponential function again.
#= iℏ ((iL)/ℏ) sum_(n=1)^(oo) [((ihatp_xL)/ℏ)^(n-1)/((n-1)!)]#
(group terms)
#= -L sum_(n=1)^(oo) [((ihatp_xL)/ℏ)^(n-1)/((n-1)!)]#
(evaluate the outside)
#= -L overbrace(sum_(n=0)^(oo) [((ihatp_xL)/ℏ)^(n)/(n!)])^(e^(ihatp_xL//ℏ))#
(if#n# starts at zero, the#(n-1)# th term becomes the#n# th term.)
As a result, we finally get:
#=> color(blue)([hatx", " e^(ihatp_xL//ℏ)]) = -Le^(ihatp_xL//ℏ)#
#-= -Le^(LhatD)#
#-= color(blue)(-LhatT_L)#
And we again get back to the original commutator, i.e. that
#[hatx, hatT_L] = -LhatT_L color(blue)(sqrt"")#
Lastly, let's show that
#[hatT_L, hatD] = [e^(LhatD), hatD]#
#= [sum_(n=0)^(oo) ((LhatD)^n)/(n!), hatD]#
#= (sum_(n=0)^(oo) ((LhatD)^n)/(n!))hatD - hatD(sum_(n=0)^(oo) ((LhatD)^n)/(n!))#
Writing this out explicitly, we can then see it work:
#= color(blue)([hatT_L", " hatD]) = [((LhatD)^0)/(0!)hatD + ((LhatD)^1)/(1!)hatD + . . . ] - [hatD((LhatD)^0)/(0!) + hatD((LhatD)^1)/(1!) + . . . ]#
#= ((LhatD)^0)/(0!)hatD - hatD((LhatD)^0)/(0!) + ((LhatD)^1)/(1!)hatD - hatD((LhatD)^1)/(1!) + . . . #
#= [((LhatD)^0)/(0!), hatD] + [(LhatD)^(1)/(1!), hatD] + . . . #
#= L^0/(0!)[(hatD)^0, hatD] +L^1/(1!) [(hatD)^(1), hatD] + . . . #
#= color(blue)(sum_(n=0)^(oo) L^n/(n!)[(hatD)^n", " hatD])#
and since
#[hatT_L, hatD] = 0# #color(blue)(sqrt"")#
