The sum of the first n term of a series is #3-[1/3^(n-1)]#. How to obtain the expression for the #n#th term of the series, Un?

1 Answer
Jan 11, 2018

# U_n=2/3^(n-1), or, 2*3^(1-n)#.

Explanation:

Let, #S_n# denote the sum of the first #n# terms of the seq. #{U_n}#.

Then, #S_n=[U_1+U_2+...+U_(n-1)]+U_n#,

# rArr S_n=S_(n-1)+U_n#.

#:. U_n=S_n-S_(n-1)#,

#=[3-1/3^(n-1)]-[3-1/3^((n-1)-1)]#,

#=1/3^(n-2)-1/3^(n-1)#,

#=1/(3^n/3^2)-1/(3^n/3)#,

#=3^2/3^n-3/3^n=(9-3)/3^n#,

#=(2xx3)/3^n#,

# rArr U_n=2/3^(n-1), or, 2*3^(1-n)#.