The obtuse angel B is such that tanB = -(5/12). How do you find the following values?

  1. sin B
  2. cos B
  3. sin 2B
  4. cos 2B

1 Answer
Sep 28, 2017

Given that the angle is obtuse , B in "quadrant II"

Again tanB=-5/12=>B~~157.3^@

sinB->+ve

cosB->-ve

sin2B->-ve" as " 2B in" quadrant IV"

cos2B->+ve" as " 2B in" quadrant IV"

Now cosB=1/secB=-1/sqrt(1+tan^2B)

=-1/(1+5^2/12^2)=-12/13

sinB=tanBxxcosB=(-5/12)xx(-12/13)=5/13

sin(2B)=(2tanB)/(1+tan^2B)==(-2xx5/12)/(1+(-5/12)^2)=-120/169

cos(2B)=(1-tan^2B)/(1+tan^2B)==(1-(-5/12)^2)/(1+(-5/12)^2)=119/169