The number of positive integral solutions of the in-equation x2(3x4)3(x2)4(x5)5(2x7)60 is ?

Ans : 2

1 Answer
Feb 25, 2018

The solution is xx[43,2]

Explanation:

Let f(x)=x2(3x4)3(x2)4(x5)5(2x7)6

Therere are 2 vertical asymptotes

Let 's build the sign chart

aaaxaaaaaaa0aaaaa43aaaa2aaaa72aaaaa5aaaa+

aaax2aaaaaa+aa0a+aaa+aa+aaaa+aaaa+

(3x4)3aaaaaaaa0a+aa+aaaa+aaaa+

(x2)4aaaaa+aaa+aaa+a0a+aaa+aaaa+

(2x7)6aaaa+aaa+aaa+a#color(white)(aa)+#aa+aaaa+

(x5)5aaaaaaaaaaa#color(white)(aaa)+#a#color(white)(a)+#aa||color(white)(aa)+

color(white)()f(x)color(white)(aaaaaaaa)+color(white)(aaa)+color(white)(aa)-color(white)(a)#color(white)(aaa)+#color(white)(a)||color(white)(a)+color(white)(aa)||color(white)(aa)+

Therefore,

f(x)<=0 when x in [4/3,2]

graph{(x^2(3x-4)^3(x-2)^4)/((x-5)^5(2x-7)^6) [-36.53, 36.56, -18.27, 18.25]}