The function f is defined by fx=5/(1-3x) for x>1 find the expression f'(x)?

1 Answer
Nov 19, 2017

f'(x)=15/(1-3x)^2

Explanation:

"differentiate using the "color(blue)"chain rule"

"given "f(x)=g(h(x))" then "

f'(x)=g'(h(x))xxh'(x)larr"chain rule"

f(x)=5/(1-3x)=5(1-3x)^-1

rArrf'(x)=-5(1-3x)^-2xxd/dx(1-3x)

color(white)(rArrf'(x))=15(1-3x)^-2=15/(1-3x)^2