The FCF (Functional Continued Fraction) cosh_(cf) (x;a) = cosh(x+a/cosh(x+a/cosh(x+...))). How do you prove that cosh_(cf) (0;1) = 1.3071725, nearly and the derivative (cosh_(cf) (x;1))'=0.56398085, at x = 0?

1 Answer
Sep 8, 2016

See the explanation and the Socratic graph for y = cosh(x+1/y).

Explanation:

Let y = cosh_(cf)(x;1)=cosh(x+1/cosh(x+1/cosh(x+...))).

This FCF is generated by

y=cosh(x+1/y)

At x=0,

y=cosh( 1/y).

Using the iteration of the discrete analog

y_n=cosh(1/y_(n-1)), n=1, 2, 3, ...,

with starter y_0=cosh (1).

8-sd approximation

y=1.3071725.

Now,

y'=(cosh(x+1/y))'

=sinh(x+1/y)(x+1/y)'

=sinh(x+1/y)(1-1/y^2y')

At x = 0,

y'=sinh(1/y)(1-1/y^2y')

Substituting y = 1.3071725 and solving for y',

y'=sinh(1/1.3071725)/(1+sinh(1/1.3071725)/(1.3071725.^2))

=0.56398068, nearly.

Graph for y = cosh(x+1/y), using the inversion

x = ln(y+sqrt(y^2 - 1))-1/y:

graph{x=ln(y+(y^2-1)^0.5)-1/y}

Observe that x >=-1 and y >=1

The second graph includes the tangent at x = 0.

graph{(x-ln(y+(y^2-1)^0.5)+1/y)(y-1.307-0.564x)=0}