The displacement of a body is given by r=√(a^2-t^2)+tcos t^2, where a is constant. Find velocity?

1 Answer
May 11, 2018

color(blue)(-t/((a^2-t^2)^(1/2))-2t^2sin(t^2)+cos(t^2)t(a2t2)122t2sin(t2)+cos(t2)

Explanation:

The change in displacement(distance) per unit of time is velocity.

Given:

r=sqrt(a^2-t^2)+tcos(t^2)r=a2t2+tcos(t2)

"velocity"=(dr)/(dt)velocity=drdt

Rewriting as:

r=(a^2-t^2)^(1/2)+tcos(t^2)r=(a2t2)12+tcos(t2)

(dr)/(dt)((a^2-t^2)^(1/2)+tcos(t^2))=1/2(a^2-t^2)^(-1/2)*(-2t)+drdt((a2t2)12+tcos(t2))=12(a2t2)12(2t)+

->t(-sin(t^2)*(2t)+cos(t^2)t(sin(t2)(2t)+cos(t2)

=(-2t)/(2(a^2-t^2)^(1/2))-2t^2sin(t^2)+cos(t^2)=2t2(a2t2)122t2sin(t2)+cos(t2)

=-t/((a^2-t^2)^(1/2))-2t^2sin(t^2)+cos(t^2)=t(a2t2)122t2sin(t2)+cos(t2)