Tan^2x-sin^2x prove it can be written as tan^2xsin^2x?

1 Answer
Nov 13, 2017

See the proof below

Explanation:

We need

tan^2x+1=sec^2xtan2x+1=sec2x

(a+b)(a-b)=a^2-b^2(a+b)(ab)=a2b2

Therefore,

LHS=tan^2x-sin^2x=(tanx+sinx)(tanx-sinx)LHS=tan2xsin2x=(tanx+sinx)(tanxsinx)

=(sinx/cosx+sinx)(sinx/cosx-sinx)=(sinxcosx+sinx)(sinxcosxsinx)

=sin^2x(1/cosx+1)(1/cosx-1)=sin2x(1cosx+1)(1cosx1)

=sin^2x(secx+1)(secx-1)=sin2x(secx+1)(secx1)

=sin^2x(sec^2x-1)=sin2x(sec2x1)

=sin^2xtan^2x=sin2xtan2x

=RHS=RHS

QEDQED