Suppose that X is a continuous random variable whose probability density function is given by: f(x)= k(2x - x^2) for 0 < x < 2f(x)=k(2xx2)for0<x<2; 0 for all other x. What is the value of k, P(X>1), E(X) and Var(X)?

1 Answer
Nov 13, 2016

k=3/4k=34
P(x>1)=1/2P(x>1)=12
E(X)=1E(X)=1
V(X)=1/5V(X)=15

Explanation:

To find kk , we use int_0^2f(x)dx=int_0^2k(2x-x^2)dx=120f(x)dx=20k(2xx2)dx=1

:. k[2x^2/2-x^3/3]_0^2=1

k(4-8/3)=1 =>4/3k=1=>k=3/4

To calculate P(x>1) , we use P(X>1)=1-P(0< x <1)

=1-int_0^1(3/4)(2x-x^2)=1-3/4[2x^2/2-x^3/3]_0^1

=1-3/4(1-1/3)=1-1/2=1/2

To calculate E(X)

E(X)=int_0^2xf(x)dx=int_0^2(3/4)(2x^2-x^3)dx

=3/4[2x^3/3-x^4/4]_0^2=3/4(16/3-16/4)=3/4*16/12=1

To calculate V(X)

V(X)=E(X^2)-(E(X))^2=E(X^2)-1

E(X^2)=int_0^2x^2f(x)dx=int_0^2(3/4)(2x^3-x^4)dx

=3/4[2x^4/4-x^5/5]_0^2=3/4(8-32/5)=6/5

:.V(X)=6/5-1=1/5