Suppose #f'(x)=p sin(1/2x)# where #p# is a constant, #f(0)=1# and #f(2pi)=0#. Find p and hence find f(x).?

1 Answer
Feb 11, 2018

# p=-1/4, and, f(x)=1/2{cos(x/2)+1}#.

Explanation:

#f'(x)=p*sin(x/2), (p" const.)"#

By the Definition of Integral, #f(x)=intf'(x)dx+c#,

#=intp*sin(x/2)dx+c#,

#=p*intsin(x/2)dx+c#,

#=p{-cos(x/2)/(1/2)}+c#.

#rArr f(x)=-2pcos(x/2)+c.............(ast)#.

Given that, #f(0)=1, (ast) rArr 1=-2pcos0+c#.

#:. c-2p=1..................................................................(ast_1)#.

Next, #f(2pi)=0, (ast) rArr 0=-2pcos(2pi/2)+c#.

#:. c+2p=0.................................................................(ast_2)#.

Solving #(ast_1) and (ast_2), c=1/2, p=-1/4#.

# rArr f(x)=1/2{cos(x/2)+1}#.