Solve (z+3)(2-z)(1-2z)>0?

1 Answer
Jul 10, 2015

z in (-3, 1/2) uu (2, oo)

Explanation:

Let f(z) = (z+3)(2-z)(1-2z) = (z+3)(2z-1)(z-2)

Then f(z) = 0 when z = -3, z = 1/2 and z = 2

These three points split the real line into four intervals:

(-oo, -3), (-3, 1/2), (1/2,2) and (2,oo)

If z in (-oo, -3) then

(z+3) < 0, (2z-1) < 0, (z-2) < 0 so f(z) < 0

If color(red)(z in (-3, 1/2)) then

(z+3) > 0, (2z-1) < 0, (z-2) < 0 so color(red)(f(z) > 0)

If z in (1/2, 2) then

(z+3) > 0, (2z-1) > 0, (z-2) < 0 so f(z) < 0

If color(red)(z in (2, oo)) then

(z+3) > 0, (2z-1) > 0, (z-2) > 0 so color(red)(f(z) > 0)

So the solution is z in (-3, 1/2) uu (2, oo)

graph{ (x+3)(2-x)(1-2x) [-40, 40, -12.24, 27.76]}