Let f(z) = (z+3)(2-z)(1-2z) = (z+3)(2z-1)(z-2)
Then f(z) = 0 when z = -3, z = 1/2 and z = 2
These three points split the real line into four intervals:
(-oo, -3), (-3, 1/2), (1/2,2) and (2,oo)
If z in (-oo, -3) then
(z+3) < 0, (2z-1) < 0, (z-2) < 0 so f(z) < 0
If color(red)(z in (-3, 1/2)) then
(z+3) > 0, (2z-1) < 0, (z-2) < 0 so color(red)(f(z) > 0)
If z in (1/2, 2) then
(z+3) > 0, (2z-1) > 0, (z-2) < 0 so f(z) < 0
If color(red)(z in (2, oo)) then
(z+3) > 0, (2z-1) > 0, (z-2) > 0 so color(red)(f(z) > 0)
So the solution is z in (-3, 1/2) uu (2, oo)
graph{ (x+3)(2-x)(1-2x) [-40, 40, -12.24, 27.76]}