Solve the equation by completing the square. 8x²=-11x-7?

1 Answer
Jul 3, 2018

x=-11/16+sqrt103/16*i or x=-11/16-sqrt103/16*i

Explanation:

Here,

8x^2=-11x-7

=>8x^2+11x+7=0

=>8x^2+11x=-7

Let , color(violet)(kinRR be the 3^(rd) term to complet square.

i.e. 8x^2+11x+color(violet)(k)=color(violet)(k)-7...to(1)

In the LHS we have ,

color(blue)(diamond 1^(st)term=8x^2

color(blue)(diamond2^(nd)term=11x

color(blue)(diamond3^(rd)term)=color(violet)(k

We have formula for 3^(rd)term :

color(red)(3^(rd)term=(2^(nd)term)^2/(4xx1^(st)term))...to(A)

=>color(violet)(k)=(11x)^2/(4xx8x^2)=(121x^2)/(32x^2)

=>color(violet)(k=121/32

From (1),we get

8x^2+11x+color(violet)(121/32)=color(violet)(121/32)-7=-103/32

=>(2sqrt2x)^2+2(2sqrt2x)(11/(4sqrt2))+(11/(4sqrt2))^2=103/32*i^2

=>(2sqrt2x+11/(4sqrt2))^2=(sqrt103/(4sqrt2)*i)^2

=>2sqrt2x+11/(4sqrt2)=+-sqrt103/(4sqrt2)*i

=>2sqrt2x=-11/(4sqrt2)+-sqrt103/(4sqrt2)*i

=>x=-11/16+-sqrt103/16*i

...................................................................................................
Note :

Formula (A) :color(red)(3^(rd)term=(2^(nd)term)^2/(4xx1^(st)term)) can be use

to find THIRD TERM for any eqn. without any doubt .

WHY ??? toPlease see below.

diamond if , a^2+2ab+k=0 ,then [use (A)]

k=(2ab)^2/(4xxa^2)=(4a^2b^2)/(4a^2)=b^2

=>a^2+2ab+b^2=(a+b)^2