Here,
8x^2=-11x-7
=>8x^2+11x+7=0
=>8x^2+11x=-7
Let , color(violet)(kinRR be the 3^(rd) term to complet square.
i.e. 8x^2+11x+color(violet)(k)=color(violet)(k)-7...to(1)
In the LHS we have ,
color(blue)(diamond 1^(st)term=8x^2
color(blue)(diamond2^(nd)term=11x
color(blue)(diamond3^(rd)term)=color(violet)(k
We have formula for 3^(rd)term :
color(red)(3^(rd)term=(2^(nd)term)^2/(4xx1^(st)term))...to(A)
=>color(violet)(k)=(11x)^2/(4xx8x^2)=(121x^2)/(32x^2)
=>color(violet)(k=121/32
From (1),we get
8x^2+11x+color(violet)(121/32)=color(violet)(121/32)-7=-103/32
=>(2sqrt2x)^2+2(2sqrt2x)(11/(4sqrt2))+(11/(4sqrt2))^2=103/32*i^2
=>(2sqrt2x+11/(4sqrt2))^2=(sqrt103/(4sqrt2)*i)^2
=>2sqrt2x+11/(4sqrt2)=+-sqrt103/(4sqrt2)*i
=>2sqrt2x=-11/(4sqrt2)+-sqrt103/(4sqrt2)*i
=>x=-11/16+-sqrt103/16*i
...................................................................................................
Note :
Formula (A) :color(red)(3^(rd)term=(2^(nd)term)^2/(4xx1^(st)term)) can be use
to find THIRD TERM for any eqn. without any doubt .
WHY ??? toPlease see below.
diamond if , a^2+2ab+k=0 ,then [use (A)]
k=(2ab)^2/(4xxa^2)=(4a^2b^2)/(4a^2)=b^2
=>a^2+2ab+b^2=(a+b)^2