Solve (logx^2)^2 - logx^3 - 10 = 0 for x?

All bases are equal (2).

1 Answer
Sep 22, 2017

x=4 or approx 0.420448

Explanation:

(logx^2)^2 - logx^3-10 = 0

Given log = log_2

(2logx)^2-3logx-10=0

4*(logx)^2-3logx-10=0

Let lambda = logx -> x=2^lambda

4lambda^2-3lambda-10 =0

(4lambda+5)(lambda-2)=0

lambda = -5/4 or +2

lambda = 2 -> x=2^2 =4

lambda = -5/4 -> x= 2^(-5/4) = 1/root4 32 approx 0.420448

Hence, x=4 or approx 0.420448