What are the possible solutions of #ax^4+bx^3+cx^2+dx+e=0# where #a!=0#, #a+c+e=0# and #b+d=0#?
1 Answer
Mar 22, 2018
This quartic has roots
#x = (-b+-sqrt(b^2-4a(a+c)))/(2a)#
Explanation:
Let:
#f(x) = ax^4+bx^3+cx^2+dx+e#
with
Then:
#f(1) = a+b+c+d+e = (a+c+e)+(b+d) = 0#
#f(-1) = a-b+c-d+e = (a+c+e)-(b+d) = 0#
So
Hence
#(x-1)(x+1) = x^2-1#
We have:
#ax^4+bx^3+cx^2+dx+e = (x^2-1)(ax^2+bx+(a+c))#
Note that from the given conditions on
So the remaining quadratic can have any coefficients.
We can express the solutions using the quadratic formula, substituting
#x = (-b+-sqrt(b^2-4a(a+c)))/(2a)#