Solve 5sinθ+2cosθ=5?

3 Answers
Jun 23, 2018

5sinθ+2cosθ=5

=>2cosθ-5(1-sintheta)=0

=>2(cos^2(θ/2)-sin^2(theta/2))-5(cos^2(theta/2)+sin^2(theta/2)-2cos(theta/2)sin(theta/2))=0

=>2(cos^2(θ/2)-sin^2(theta/2))-5(cos(theta/2)-sin(theta/2))^2=0

=>(cos(theta/2)-sin(theta/2))(2cos(theta/2)+2sin(theta/2)-5cos(theta/2)+5sin(theta/2))=0

=>(cos(theta/2)-sin(theta/2))(7sin(theta/2)-3cos(theta/2))=0

When

(cos(theta/2)-sin(theta/2))=0

=>tan(theta/2)=1=tan(pi/4)

=>theta/2=npi+pi/4" where "n in ZZ

=>theta=2npi+pi/2" where "n in ZZ

When

7sin(theta/2)-3cos(theta/2)=0

=>tan(theta/2)=3/7=tanalpha (say)

=>theta/2=kpi+alpha" where " k in ZZ

=>theta=2kpi+2alpha" where " k in ZZ and alpha=tan^-1(3/7)

Jun 23, 2018

t = 46^@63 + k360^@
t = 90^@ + k360^@

Explanation:

5sin t + 2cos t = 5
Divide both sides by 5:
sin t + (2/5)cos t = 1 (1)
Call tan a = sin a/(cos a) = 2/5 --> a = 21^@80, and cos a = 0.93.
The equation (1) becomes;
sin t cos a + sin a.cos t = cos a
sin (t + 21^@80) = 0.93
Calculator, unit circle and property of sin function give 2 solutions for (t + 21.80):
(t + 21.80) = 68.43^@, and
(t + 21.80) = 180 - 68.43 = 111^@57#.

a. t + 21.80 = 68.43 +k360
t = 46^@63 + k360^@
b. t + 21.80 = 111.57 +k360
t = 89^@77 + k360^@, or --> t = 90^@ + k360^@
Check by calculator.
t = 46.63 --> 5sin t = 5(0.726) = 3.63 --> 2cos t = 2(0.686) = 1.37
5sin t + 2cos t = 3.63 + 1.37 = 5. Proved
t = 90^@ --> 5sin t = 5(1) = 5 -> cos t = 0.
5sin t + 2cos t = 5 + 0 = 5. Proved

Jun 23, 2018

x in {kpi+(-1)^kpi/2}uu{kpi+(-1)^karcsin(21/29)}, k in ZZ.

Explanation:

Given that, 5sintheta+2costheta=5.

:. 2costheta=5(1-sintheta).

"Squaring, "4cos^2theta=25(1-sintheta)^2,

i.e., 4(1-sin^2theta)=25(1-sintheta)^2

"Transposing, "4(1-sintheta)(1+sintheta)-25(1-sintheta)^2=0.

:. (1-sintheta){4(1+sintheta)-25(1-sintheta)}=0,

or, (1-sintheta)(29sintheta-21)=0.

:. sintheta=1, or, sintheta=21/29.

sintheta=1=sin(pi/2) rArr theta=kpi+(-1)^kpi/2, k in ZZ.

sintheta=21/29=sin(arcsin(21/29))," gives, "

theta=kpi+(-1)^karcsin(21/29), k in ZZ.

Altogether, we get ,

x in {kpi+(-1)^kpi/2}uu{kpi+(-1)^karcsin(21/29)}, k in ZZ.