Solve #3x^2 + (1+2i)x + 1 - i = 0#?

1 Answer
Apr 24, 2018

#x=[-1+-sqrt((sqrt481+15)/2)]/6+(-2+-sqrt((sqrt481+15)/2))/6i#

Explanation:

The quadratic equation is #3x^2+(1+2i)x+1-i=0#

now its discriminant is #(1+2i)^2-4*3*(1-i)#

= #1-4+4i-12+12i=-15+16i#

Hence using quadratic formula its roots are

#x=(-(1+2i)+-sqrt(-15+16i))/6#

Let #sqrt(-15+16i)=a+bi#, then squaring

#-15+16i=a^2-b^2+2abi#

i.e. #a^2-b^2=-15# and #2ab=16#

and #(a^2+b^2)^2=(a^2-b^2)^2+4a^2b^2=225+256=481#

i.e. #a^2+b^2=sqrt481#

and #a^2=(sqrt481-15)/2# and #b^2=(sqrt481+15)/2#

i.e #sqrt(-15+16i)=sqrt((sqrt481+15)/2)+isqrt((sqrt481+15)/2)#

and putting this we get

#x=(-(1+2i)+-(sqrt((sqrt481+15)/2)+isqrt((sqrt481+15)/2)))/6#

= #[-1+-sqrt((sqrt481+15)/2)]/6+(-2+-sqrt((sqrt481+15)/2))/6i#

Note that if we choose #+# in real part, we choose #+# in imaginary part too and if we choose #-# in real part, we choose #-# in imaginary part too.