Solve (3^x - 1)(2^(2x) - 1/16) = 0 for x?

1 Answer
Aug 27, 2017

x=-2
x=0

Explanation:

color(blue)("Determine the first root")

Before we start: log(a^b) is the same as blog(a)

Divide both sides by (3^x -1)

Note that 0/(3^x-1)=0

2^(2x)-1/16=0

2^(2x)=1/16

Take logs of both sides. I choose log_10

2xlog(2)=log(1/16)

x=(log(1/16))/(2log(2))

x=-2
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Check
(3^x - 1)(2^(2x) - 1/16) = 0" " ->" " (3^(-2)-1)(2^(2xx(-2))-1/16)=0

color(white)("bbbbbbbbbbbbbbbbbbbbbs") ->" "-8/9(1/16-1/16)=0
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
color(blue)("Determine the second root")

Set (3^x-1) =0

3^x=1

but as 3^0=1 we must have

x=0

Tony B