The equation is
#|2x-3|+|x-1|=|x-2|#
There are #3# points to consider
#{(2x-3=0),(x-1=0),(x-2=0):}#
#=>#, #{(x=3/2),(x=1),(x=2):}#
There are #4# intervals to consider
#{(-oo,1),(1,3/2),(3/2,2),(2,+oo):}#
On the first interval #(-oo,1)#
#-2x+3-x+1=-x+2#
#=>#, #2x=2#
#=>#, #x=1#
#x# fits in this interval and the solution is valid
On the second interval #(1, 3/2)#
#-2x+3+x-1=-x+2#
#=>#, #0=0#
There is no solution in this interval
On the third interval #( 3/2,2)#
#2x-3+x-1=-x+2#
#=>#, #4x=6#
#=>#, #x=6/4=3/2#
#x# fits in this interval and the solution is valid
On the fourth interval #(2, +oo)#
#2x-3+x-1=x-2#
#=>#, #2x=2#
#=>#, #x=1#
#x# does not fit in this interval.
The solutions are #S={1, 3/2}#