Simplify #(sintheta + cos2theta - 1)/(costheta-sin2theta)#?
Answer is #tantheta# but I don't get how to get there...
Answer is
1 Answer
Apr 5, 2018
Please see below.
Explanation:
Recall that
#=(sintheta + 1 - 2sin^2theta - 1)/(costheta - 2sinthetacostheta)#
#=(sintheta - 2sin^2theta)/(costheta - 2sinthetacostheta)#
#=(sintheta(1 - 2sintheta))/(costheta(1 - 2sintheta))#
#=sintheta/costheta#
#=tantheta#
Hopefully this helps!