Simplify And Prove That ?? (Sec8α-1) / (Sec4α-1) = (Tan8α)/(Tan2α)

1 Answer
May 23, 2018

LHS=(sec8alpha-1)/(sec4alpha-1)LHS=sec8α1sec4α1

=(1/(cos8alpha)-1)/(1/(cos4alpha)-1)=1cos8α11cos4α1

=((1-cos8alpha)/(cos8alpha))/((1-cos4alpha)/(cos4alpha))=1cos8αcos8α1cos4αcos4α

=(2sin^2 4alphacos4alpha)/(2sin^2 2 alphacos8alpha)=2sin24αcos4α2sin22αcos8α

=(sin 8alpha*sin4alpha)/(2sin^2 2 alphacos8alpha)=sin8αsin4α2sin22αcos8α

=(sin 8alpha*2sin2alphacos2alpha)/(2sin^2 2 alphacos8alpha)=sin8α2sin2αcos2α2sin22αcos8α

=(tan 8alpha)/((sin 2 alpha)/(cos 2alpha)=tan8αsin2αcos2α

=(tan 8alpha)/(tan 2 alpha)=RHS=tan8αtan2α=RHS