Show that the equation 1+sinxtanx=5cosx can be expressed as 6cos^2-cosx-1=0?

1 Answer
Nov 12, 2017

See the proof below

Explanation:

We need

tanx=sinx/cosx

sin^2x-cos^2x=1

Therefore,

1+sinxtanx=5cosx

1+sinx*sinx/cosx=5cosx

Multiply by cosx

cosx+sin^2x=5cos^2x

Replacing sin^2x by 1-cos^2x

cosx+1-cos^2x=5cos^2x

5cos^2x-cos^2x-cosx-1=0

6cos^2x-cosx-1=0

QED