Show #d/dx (cos^-1 2x)=-2/(1-4x^2)^(1/2).# If #y=sin (cos^-1 2x),#show that #(1-4x^2) (d^2y)/(dx^2)-4x dy/dx+4y=0.# How to do this?
2 Answers
We want to show that:
# d/dx cos^(-1)(2x)=-2/(1-4x^2)^(1/2) #
# y =sin( cos^(-1)(2x)) => (1-4x^2) (d^2y)/(dx^2)-4x dy/dx+4y=0#
We start with the standard calculus result:
# d/dx cos^(-1)x = -1/sqrt(1-x^2) #
Then applying the chain rule, we have:
# d/dx cos^(-1)(2x) = -1/sqrt(1-(2x)^2) d/dx (2x) #
# " " = -2/sqrt(1-4x^2) \ \ \ # QED
so then, given
# dy/dx = cos( cos^(-1)(2x)) d/dx cos^(-1)(2x) #
# \ \ \ \ \ = (2x) (-2/sqrt(1-4x^2)) #
# \ \ \ \ \ = (-4x) / sqrt(1-4x^2) #
And then by applying the quotient rule:
# (d^2y)/(dx^2) = { (sqrt(1-4x^2))(d/dx -4x) - (-4x)(d/dx sqrt(1-4x^2)) } / (sqrt(1-4x^2))^2 #
# \ \ \ \ \ \ = { (sqrt(1-4x^2))(-4) + 4x(1/2(1-4x^2)^(-1/2)d/dx(-4x^2)) } / (1-4x^2) #
# \ \ \ \ \ \ = { (sqrt(1-4x^2))(-4) + 4x(1/2(1-4x^2)^(-1/2)(-8x)) } / (1-4x^2) #
# \ \ \ \ \ \ = { -4sqrt(1-4x^2) - (16x^2)/sqrt(1-4x^2) } / (1-4x^2) #
And so the LHS of the given DE is:
# LHS = (1-4x^2) (d^2y)/(dx^2)-4x dy/dx+4y #
# \ \ \ \ \ \ \ \ = (1-4x^2) {{ -4sqrt(1-4x^2) - (16x^2)/sqrt(1-4x^2) } / (1-4x^2)} -4x {(-4x) / sqrt(1-4x^2)} +4sin( cos^(-1)(2x)) #
# \ \ \ \ \ \ \ \ = -4sqrt(1-4x^2) - (16x^2)/sqrt(1-4x^2) +(16x^2) / sqrt(1-4x^2) +4sin( cos^(-1)(2x)) #
# \ \ \ \ \ \ \ \ = 4sin( cos^(-1)(2x)) -4sqrt(1-4x^2) #
Now if we use the trigonometric identity
# (sin (cos^(-1)2x))^2 + (cos(cos^(-1)2x))^2 -=1 #
# :. (sin (cos^(-1)2x))^2 =1 - (cos(cos^(-1)2x))^2 #
# :. sin (cos^(-1)2x) =sqrt(1 - (2x)^2) = sqrt(1 - 4x^2)#
So, we have:
# LHS = 4{sqrt(1 - 4x^2)} -4sqrt(1-4x^2) #
# \ \ \ \ \ \ \ \ = 0 \ \ \ # QED
Please refer to the Explanation.
Explanation:
We differentiate using the Chain Rule :
For ease of writing, we will use the following notations :
Note that :
Next, we have,
Hence, squaring and adding
Rediff.ing w.r.t.
Dividing throughout by
Enjoy Maths!