sec^2theta/(2tantheta) = sec2θ2tanθ=? Explain And Answer Question

1 Answer
May 2, 2018

1/2cscthetasectheta12cscθsecθ

Explanation:

"using the "color(blue)"trigonometric identities"using the trigonometric identities

•color(white)(x)sectheta=1/costheta" and "tantheta=sintheta/costhetaxsecθ=1cosθ and tanθ=sinθcosθ

•color(white)(x)csctheta=1/sinthetaxcscθ=1sinθ

rArr(1/(cos^2theta))/((2sintheta)/costheta)1cos2θ2sinθcosθ

=1/(cancel(costheta)costheta)xxcancel(costheta)/(2sintheta)

=1/(2sinthetacostheta)

=1/2xx1/sinthetaxx1/costheta=1/2cscthetasectheta