#sec^2theta/(2tantheta) = #? Explain And Answer Question
1 Answer
May 2, 2018
Explanation:
#"using the "color(blue)"trigonometric identities"#
#•color(white)(x)sectheta=1/costheta" and "tantheta=sintheta/costheta#
#•color(white)(x)csctheta=1/sintheta#
#rArr(1/(cos^2theta))/((2sintheta)/costheta)#
#=1/(cancel(costheta)costheta)xxcancel(costheta)/(2sintheta)#
#=1/(2sinthetacostheta)#
#=1/2xx1/sinthetaxx1/costheta=1/2cscthetasectheta#