sec^2theta/(2tantheta) = sec2θ2tanθ=? Explain And Answer Question
1 Answer
May 2, 2018
Explanation:
"using the "color(blue)"trigonometric identities"using the trigonometric identities
•color(white)(x)sectheta=1/costheta" and "tantheta=sintheta/costheta∙xsecθ=1cosθ and tanθ=sinθcosθ
•color(white)(x)csctheta=1/sintheta∙xcscθ=1sinθ
rArr(1/(cos^2theta))/((2sintheta)/costheta)⇒1cos2θ2sinθcosθ
=1/(cancel(costheta)costheta)xxcancel(costheta)/(2sintheta)
=1/(2sinthetacostheta)
=1/2xx1/sinthetaxx1/costheta=1/2cscthetasectheta