Q.1. What is the De-Broglie wavelength of He atom in a container at room temperature? Use u_(avg) = sqrt((8k_BT)/(pi m))uavg=√8kBTπm
1 Answer
I got
Well, assuming that the
f(u) = 4pi (m/(2pik_BT))^(3//2) u^2 e^(-m u^2//2k_BT)f(u)=4π(m2πkBT)3/2u2e−mu2/2kBT
they thus have the average speed
u_(avg) = int_(0)^(oo) uf(u)du = [ . . . ] = sqrt((8k_B T)/(pim))uavg=∫∞0uf(u)du=[...]=√8kBTπm ,where:
k_B = 1.38065 xx 10^(-23)kB=1.38065×10−23 is the Boltzmann constant in"J/K"J/K , or"kg"cdot"m"^2"/s"^2cdot"K"kg⋅m2/s2⋅K .TT is the temperature in"K"K .mm is the per-particle mass in"kg"kg , i.e.M//N_A = mM/NA=m , whereMM is the molar mass in"kg/mol"kg/mol andN_A = 6.0221413 xx 10^(23) "mol"^(-1)NA=6.0221413×1023mol−1 .
We then use this average speed as the velocity
lambda = h/(mv)λ=hmv ,where
h = 6.626 xx 10^(-34) "J"cdot"s"h=6.626×10−34J⋅s , or"kg"cdot"m"^2"/s"kg⋅m2/s , is Planck's constant andmm is as defined before,since the particles are assumed to all be moving in the same direction so that the velocity is the speed.
Therefore, the wavelength is:
color(blue)(lambda) = h/m xx sqrt((pim)/(8k_B T))λ=hm×√πm8kBT
= sqrt((pih^2)/(8mk_B T))=√πh28mkBT
= sqrt((pi(6.626 xx 10^(-34) cancel("kg")cdot"m"^cancel(2)"/"cancel("s"))^2)/(8(0.0040026 cancel("kg")"/"cancel"mol" xx cancel"1 mol"/(6.0221413 xx 10^(23)))(1.38065 xx 10^(-23) cancel("kg")cdotcancel("m"^2)"/"cancel("s"^2)cdotcancel"K")(298.15 cancel("K"))))
= 7.938 xx 10^(-11) "m"
= color(blue)("0.0794 nm") ,
which is in the gamma-ray region of the EM spectrum.