Q.1Q.1 If alpha,betaα,β are the roots of the equation x^2-2x+3=0x22x+3=0 obtain the equation whose roots are alpha^3-3 alpha^2+5 alpha -2α33α2+5α2 and beta^3-beta^2+beta+5β3β2+β+5?

Q.2Q.2 If one root of the equation ax^2+bx+c=0ax2+bx+c=0 be the square of the other,
Prove that b^3+a^2c+ac^2=3abcb3+a2c+ac2=3abc
(they are the sub questions of one question)

1 Answer
Jul 20, 2017

Q.1Q.1 If alpha,betaα,β are the roots of the equation x^2-2x+3=0x22x+3=0 obtain the equation whose roots are alpha^3-3 alpha^2+5 alpha -2α33α2+5α2 and beta^3-beta^2+beta+5β3β2+β+5?

Answer

given equation x^2-2x+3=0x22x+3=0

=>x=(2pmsqrt(2^2-4*1*3))/2=1pmsqrt2ix=2±224132=1±2i

Let alpha=1+sqrt2i and beta=1-sqrt2iα=1+2iandβ=12i

Now let

gamma=alpha^3-3 alpha^2+5 alpha -2γ=α33α2+5α2

=>gamma=alpha^3-3 alpha^2+3 alpha -1+2alpha-1γ=α33α2+3α1+2α1

=>gamma=(alpha-1)^3+alpha-1+alphaγ=(α1)3+α1+α

=>gamma=(sqrt2i)^3+sqrt2i+1+sqrt2iγ=(2i)3+2i+1+2i

=>gamma=-2sqrt2i+sqrt2i+1+sqrt2i=1γ=22i+2i+1+2i=1

And let

delta=beta^3-beta^2+beta+5δ=β3β2+β+5

=>delta=beta^2(beta-1)+beta+5δ=β2(β1)+β+5

=>delta=(1-sqrt2i)^2(-sqrt2i)+1-sqrt2i+5δ=(12i)2(2i)+12i+5

=>delta=(-1-2sqrt2i)(-sqrt2i)+1-sqrt2i+5δ=(122i)(2i)+12i+5

=>delta=sqrt2i-4+1-sqrt2i+5=2δ=2i4+12i+5=2

So the quadratic equation having roots gamma and deltaγandδ is

x^2-(gamma+delta)x+gammadelta=0x2(γ+δ)x+γδ=0

=>x^2-(1+2)x+1*2=0x2(1+2)x+12=0

=>x^2-3x+2=0x23x+2=0

Q.2Q.2 If one root of the equation ax^2+bx+c=0ax2+bx+c=0 be the square of the other,
Prove that b^3+a^2c+ac^2=3abcb3+a2c+ac2=3abc

Let one root be alphaα then other root will be alpha^2α2

So alpha^2+alpha=-b/aα2+α=ba
and

alpha^3=c/aα3=ca

=>alpha^3-1=c/a-1α31=ca1

=>(alpha-1)(alpha^2+alpha+1)=c/a-1=(c-a)/a(α1)(α2+α+1)=ca1=caa

=>(alpha-1)(-b/a+1)=(c-a)/a(α1)(ba+1)=caa

=>(alpha-1)((a-b)/a)=(c-a)/a(α1)(aba)=caa

=>(alpha-1)=(c-a)/(a-b)(α1)=caab

=>alpha=(c-a)/(a-b)+1=(c-b)/(a-b)α=caab+1=cbab

Now alpha α being one of the roots of the quadratic equation ax^2+bx+c=0ax2+bx+c=0 we can write

aalpha^2+balpha+c=0aα2+bα+c=0

=>a((c-b)/(a-b))^2+b((c-b)/(a-b))+c=0a(cbab)2+b(cbab)+c=0

=>a(c-b)^2+b(c-b)(a-b)+c(a-b)^2=0a(cb)2+b(cb)(ab)+c(ab)2=0

=>ac^2-2abc+ab^2+abc-ab^2-b^2c+b^3+ca^2-2abc+b^2c=0ac22abc+ab2+abcab2b2c+b3+ca22abc+b2c=0

=>b^3+a^2c+ac^2=3abcb3+a2c+ac2=3abc

proved

Alternative

aalpha^2+balpha+c=0aα2+bα+c=0

=>aalpha+b+c/alpha=0aα+b+cα=0

=>a(c/a)^(1/3)+b+c/((c/a)^(1/3))=0a(ca)13+b+c(ca)13=0

=>c^(1/3)a^(2/3)+c^(2/3)a^(1/3)=-bc13a23+c23a13=b

=>(c^(1/3)a^(2/3)+c^(2/3)a^(1/3))^3=(-b)^3(c13a23+c23a13)3=(b)3

=>(c^(1/3)a^(2/3))^3+(c^(2/3)a^(1/3))^3+3c^(1/3)a^(2/3)xxc^(2/3)a^(1/3)(c^(1/3)a^(2/3)+c^(2/3)a^(1/3))=(-b)^3(c13a23)3+(c23a13)3+3c13a23×c23a13(c13a23+c23a13)=(b)3

=>ca^2+c^2a+3ca(-b)=(-b)^3ca2+c2a+3ca(b)=(b)3

=>b^3+ca^2+c^2a=3abcb3+ca2+c2a=3abc