Proving an identity and solving an equation?
(i) Prove the identity 1/costheta - costheta/(1 + sintheta) \equiv tantheta
(ii) Solve the equation 1/costheta - costheta/(1 + sintheta) + 2 = 0 for 0 degrees <= theta <= 360 degrees.
(i) Prove the identity
(ii) Solve the equation
2 Answers
Explanation:
"consider the left side"
1/costheta-(costheta)/(1+sintheta)larr" express as single fraction"
=(1+sintheta-cos^2theta)/(costheta(1+sintheta))
=(1+sintheta-(1-sin^2theta))/(costheta(1+sintheta))
=(sinthetacancel((1+sintheta)))/(costhetacancel((1+sintheta)))
=sintheta/costheta=tantheta=" right side "rArr" proved"
"for "(ii)" we now have"
tantheta+2=0
rArrtantheta=-2
tantheta" is negative in second and fourth quadrants"
rArrtheta=tan^-1(2)=63.43^@larrcolor(red)" related acute angle"
rArrtheta=(180-63.43)^@=116.57^@
"or "theta=(360-63.43)^@=296.57^@
rArrtheta=116.57^@,296.57^@to0<=theta<=360