sin(a-b)/cos(a+b)= (tana-tanb)/(1-tanatanb)sin(a−b)cos(a+b)=tana−tanb1−tanatanb
Apply sine difference and cosine sum identities:
(sinacosb-cosasinb)/(cosacosb-sinasinb)= (tana-tanb)/(1-tanatanb)sinacosb−cosasinbcosacosb−sinasinb=tana−tanb1−tanatanb
Divide each term in the numerator by cosacosbcosacosb:
(cosacosb((sinacancel(cosb))/(cosacancel(cosb))-(cancel(cosa)sinb)/(cancel(cosa)cosb)))/(cosacosb-sinasinb)= (tana-tanb)/(1-tanatanb)
Apply quotient identity: sintheta/costheta=tantheta
(cosacosb(tana-tanb))/(cosacosb-sinasinb)= (tana-tanb)/(1-tanatanb)
Divide each term in the denominator by cosacosb:
(cosacosb(tana-tanb))/(cosacosb((cancel(cosacosb))/(cancel(cosacosb))-(sinasinb)/(cosacosb)))= (tana-tanb)/(1-tanatanb)
Apply quotient identity: sintheta/costheta=tantheta:
(cancel(cosacosb)(tana-tanb))/(cancel(cosacosb)(1-tanatanb))= (tana-tanb)/(1-tanatanb)
(tana-tanb)/(1-tanatanb)= (tana-tanb)/(1-tanatanb)