Prove/verify the identity? sin(alpha-beta)/(cos(alpha+beta)) = (tanalpha-tanbeta)/(1-tanalphatanbeta)sin(αβ)cos(α+β)=tanαtanβ1tanαtanβ

Thanks in advance

1 Answer
Apr 7, 2018

verified below...

Explanation:

sin(a-b)/cos(a+b)= (tana-tanb)/(1-tanatanb)sin(ab)cos(a+b)=tanatanb1tanatanb

Apply sine difference and cosine sum identities:
(sinacosb-cosasinb)/(cosacosb-sinasinb)= (tana-tanb)/(1-tanatanb)sinacosbcosasinbcosacosbsinasinb=tanatanb1tanatanb

Divide each term in the numerator by cosacosbcosacosb:
(cosacosb((sinacancel(cosb))/(cosacancel(cosb))-(cancel(cosa)sinb)/(cancel(cosa)cosb)))/(cosacosb-sinasinb)= (tana-tanb)/(1-tanatanb)

Apply quotient identity: sintheta/costheta=tantheta
(cosacosb(tana-tanb))/(cosacosb-sinasinb)= (tana-tanb)/(1-tanatanb)

Divide each term in the denominator by cosacosb:
(cosacosb(tana-tanb))/(cosacosb((cancel(cosacosb))/(cancel(cosacosb))-(sinasinb)/(cosacosb)))= (tana-tanb)/(1-tanatanb)

Apply quotient identity: sintheta/costheta=tantheta:
(cancel(cosacosb)(tana-tanb))/(cancel(cosacosb)(1-tanatanb))= (tana-tanb)/(1-tanatanb)

(tana-tanb)/(1-tanatanb)= (tana-tanb)/(1-tanatanb)