#sin(a-b)/cos(a+b)= (tana-tanb)/(1-tanatanb)#
Apply sine difference and cosine sum identities:
#(sinacosb-cosasinb)/(cosacosb-sinasinb)= (tana-tanb)/(1-tanatanb)#
Divide each term in the numerator by #cosacosb#:
#(cosacosb((sinacancel(cosb))/(cosacancel(cosb))-(cancel(cosa)sinb)/(cancel(cosa)cosb)))/(cosacosb-sinasinb)= (tana-tanb)/(1-tanatanb)#
Apply quotient identity: #sintheta/costheta=tantheta#
#(cosacosb(tana-tanb))/(cosacosb-sinasinb)= (tana-tanb)/(1-tanatanb)#
Divide each term in the denominator by #cosacosb#:
#(cosacosb(tana-tanb))/(cosacosb((cancel(cosacosb))/(cancel(cosacosb))-(sinasinb)/(cosacosb)))= (tana-tanb)/(1-tanatanb)#
Apply quotient identity: #sintheta/costheta=tantheta#:
#(cancel(cosacosb)(tana-tanb))/(cancel(cosacosb)(1-tanatanb))= (tana-tanb)/(1-tanatanb)#
#(tana-tanb)/(1-tanatanb)= (tana-tanb)/(1-tanatanb)#