Prove using the formal definition of a derivative that (f-g)'(x)= f'(x)-g'(x)?

1 Answer
Feb 4, 2018

See explanation.

Explanation:

According to the definition the derivative of f(x)f(x) is:

f'(x)=lim_{h->0}(f(x+h)-f(x))/h

If we apply the definition to f(x)-g(x) we get:

(f-g)'(x)=lim_{h->0}([f(x+h)-g(x+h)]-[f(x)-g(x)])/h

=lim_{h->0}(f(x+h)-g(x+h)-f(x)+g(x))/h

=lim_{h->0}(f(x+h)-f(x)-(g(x+h)-g(x)))/h

=lim_{h->0}(f(x+h)-f(x))/h-lim_{h->0}(g(x+h)-g(x))/h

=f'(x)-g'(x)

QED