Prove the identity Tan^2x-sin^2x is same as (tan^2x)(sin^2x)?

1 Answer
Apr 6, 2018

Tan^2x-sin^2x tan2xsin2x

=> sin^2x/cos^2x-sin^2x sin2xcos2xsin2x color(white)(wwwwwwwwwwwwwwwwww ["as " tanx = sinx/cosx][as tanx=sinxcosx]

=> (sin^2x - sin^2xcos^2x)/cos^2xsin2xsin2xcos2xcos2x

=> (sin^2x(1 - cos^2x))/cos^2xsin2x(1cos2x)cos2x color(white)(wwwwwwwwwwww ["as " sin^2x + cos^2x =1][as sin2x+cos2x=1]

=> (sin^2x(sin^2x))/cos^2xsin2x(sin2x)cos2x

=>tan^2xsin^2xtan2xsin2x