Here is another Method to prove the Result :
Observe that the Exp. on the L.H.S. can be obtained using
componendo-dividendo on sin75^@/sin15^@sin75∘sin15∘.
Now, sin75^@/(sin15^@)=sin75^@/cos(90^@-15^@)=sin75^@/cos75^@sin75∘sin15∘=sin75∘cos(90∘−15∘)=sin75∘cos75∘,
=tan75^@=tan(45^@+30^@)=tan75∘=tan(45∘+30∘),
=(tan45^@+tan30^@)/(1-tan45^@tan30^@)=tan45∘+tan30∘1−tan45∘tan30∘,
=(1+1/sqrt3)/(1-1/sqrt3)=1+1√31−1√3.
rArr sin75^@/(sin15^@)=(sqrt3+1)/(sqrt3-1)⇒sin75∘sin15∘=√3+1√3−1.
By componendo-dividendo, then,
(sin75^@+sin15^@)/(sin75^@-sin15^@)sin75∘+sin15∘sin75∘−sin15∘,
={(sqrt3+1)+(sqrt3-1)}/{(sqrt3+1)-(sqrt3-1)}=(√3+1)+(√3−1)(√3+1)−(√3−1),
=sqrt3=√3, as Respected Shwetank Mauria Sir has already derived!