Prove That ? (Sin75°+Sin15°)/(Sin75°-Sin15°)=√3

2 Answers
May 12, 2018

Please see below.

Explanation:

As sinA+sinB=2sin((A+B)/2)cos((A-B)/2)

and sinA-sinB=2cos((A+B)/2)sin((A-B)/2)

(sin75^@+sin15^@)/(sin75^@-sin15^@)

= (2sin((75^@+15^@)/2)cos((75^@-15^@)/2))/(2cos((75^@+15^@)/2)sin((75^@-15^@)/2)

= (sin45^@cos30^@)/(cos45^@sin30^@)

= tan45^@cot30^@

= 1xxsqrt3

= sqrt3

May 12, 2018

Please refer to the Explanation.

Explanation:

Here is another Method to prove the Result :

Observe that the Exp. on the L.H.S. can be obtained using

componendo-dividendo on sin75^@/sin15^@.

Now, sin75^@/(sin15^@)=sin75^@/cos(90^@-15^@)=sin75^@/cos75^@,

=tan75^@=tan(45^@+30^@),

=(tan45^@+tan30^@)/(1-tan45^@tan30^@),

=(1+1/sqrt3)/(1-1/sqrt3).

rArr sin75^@/(sin15^@)=(sqrt3+1)/(sqrt3-1).

By componendo-dividendo, then,

(sin75^@+sin15^@)/(sin75^@-sin15^@),

={(sqrt3+1)+(sqrt3-1)}/{(sqrt3+1)-(sqrt3-1)},

=sqrt3, as Respected Shwetank Mauria Sir has already derived!