Prove that a2b2c2+2bcb2+2bc+c2a2=(sb)(sc)s(sa) Ifa+b+c=2s?

1 Answer
Feb 21, 2015

Follow my passages:

a2b2c2+2bcb2+2bc+c2a2=(a2(b2+c22bc)(b2+2bc+c2)a2)=

=(a2(bc)2(b+c)2a2)=(1)

At the numerator and at the denominator there is a difference of two squares, and remembering that:

x2y2=(xy)(x+y)

(1)=(a(bc))(a+(bc))((b+c)a)((b+c)+a)=(ab+c)(a+bc)(b+ca)(b+c+a)=(2).

Now, since s=12(a+b+c), than:

(sb)(sc)s(sa)=(12(a+b+c)b)(12(a+b+c)c)(12(a+b+c)(12(a+b+c)a))=

=a+b+c2b2a+b+c2c212(a+b+c)a+b+c2a2=14(ab+c)(a+bc)14(a+b+c)(b+ca)=(3)

and simplifying for 14 (2)=(3).