Prove that? sqrt(2+sqrt(2+sqrt(2+2cos8theta = 2costheta
2 Answers
Explanation:
As
i.e.
Hence
=
=
=
=
=
=
=
=
=
The identity is false in general, but true for
Explanation:
The given identity does not hold in general.
For example, with
sqrt(2+sqrt(2+sqrt(2+2cos8 theta)))
=sqrt(2+sqrt(2+sqrt(2+2cos((4pi)/3))))
=sqrt(2+sqrt(2+sqrt(2+2(-1/2))))
=sqrt(2+sqrt(2+sqrt(1)))
=sqrt(2+sqrt(3)) ~~ 1.932
But:
2 cos(theta) = 2 cos(pi/6) = 2 (sqrt(3)/2) = sqrt(3) ~~ 1.732
What is true?
A double angle formula for
cos 2theta = 2 cos^2 theta - 1
So:
cos 8 theta = 2 cos^2 4theta - 1
and:
2+2cos 8 theta = 2+2(2 cos^2 4theta - 1) = 4 cos^2 4 theta
So:
sqrt(2+2cos 8 theta) = sqrt(4 cos^2 4 theta) = abs(2 cos 4theta)
So if
sqrt(2+2cos 8 theta) = 2 cos 4 theta
Then:
2+2cos 4 theta = 2+2(2cos^2 2 theta - 1) = 4 cos^2 2 theta
So:
sqrt(2+2cos 4 theta) = sqrt(4 cos^2 2 theta) = abs(2cos 2 theta)
So if
sqrt(2+2cos 4 theta) = 2cos 2 theta
Then:
2+2cos 2 theta = 2+2(2cos^2 theta - 1) = 4cos^2 theta
So:
sqrt(2+2cos 2 theta) = sqrt(4 cos^2 theta) = abs(2 cos theta)
So if
sqrt(2+2cos 2 theta) = 2 cos theta
So we have shown that provided all of:
-
cos 4 theta >= 0 -
cos 2 theta >= 0 -
cos theta >= 0
then:
sqrt(2+sqrt(2+sqrt(2+2cos 8 theta))) = 2 cos theta
These conditions will be satisfied for