Prove that? sqrt(2+sqrt(2+sqrt(2+2cos8theta = 2costheta

2 Answers
Sep 19, 2017

sqrt(2+sqrt(2+sqrt(2+2cos8theta)))=2costheta

Explanation:

As cos2A=2cos^2A-1, we have

cos8theta=2cos^2(4theta)-1, cos4theta=2cos^2(2theta)-1 and cos2theta=2cos^2theta-1

i.e. 1+cos8theta=2cos^2(4theta), 1+cos4theta=2cos^2(2theta) and 1+cos2theta=2cos^2theta

Hence sqrt(2+sqrt(2+sqrt(2+2cos8theta)))

= sqrt(2+sqrt(2+sqrt(2(1+cos8theta))))

= sqrt(2+sqrt(2+sqrt(2xx2cos^2(4theta))))

= sqrt(2+sqrt(2+2cos(4theta)))

= sqrt(2+sqrt(2(1+cos(4theta)))

= sqrt(2+sqrt(2xx2cos^2(2theta)))

= sqrt(2+2cos2theta)

= sqrt(2(1+cos2theta))

= sqrt(2xx2cos^2theta)

= 2costheta

Sep 19, 2017

The identity is false in general, but true for theta in [-pi/8, pi/8]

Explanation:

The given identity does not hold in general.

For example, with theta = pi/6 we find:

sqrt(2+sqrt(2+sqrt(2+2cos8 theta)))

=sqrt(2+sqrt(2+sqrt(2+2cos((4pi)/3))))

=sqrt(2+sqrt(2+sqrt(2+2(-1/2))))

=sqrt(2+sqrt(2+sqrt(1)))

=sqrt(2+sqrt(3)) ~~ 1.932

But:

2 cos(theta) = 2 cos(pi/6) = 2 (sqrt(3)/2) = sqrt(3) ~~ 1.732

What is true?

A double angle formula for cos can be written:

cos 2theta = 2 cos^2 theta - 1

So:

cos 8 theta = 2 cos^2 4theta - 1

and:

2+2cos 8 theta = 2+2(2 cos^2 4theta - 1) = 4 cos^2 4 theta

So:

sqrt(2+2cos 8 theta) = sqrt(4 cos^2 4 theta) = abs(2 cos 4theta)

So if cos 4 theta >= 0 then:

sqrt(2+2cos 8 theta) = 2 cos 4 theta

Then:

2+2cos 4 theta = 2+2(2cos^2 2 theta - 1) = 4 cos^2 2 theta

So:

sqrt(2+2cos 4 theta) = sqrt(4 cos^2 2 theta) = abs(2cos 2 theta)

So if cos 2 theta >= 0 then:

sqrt(2+2cos 4 theta) = 2cos 2 theta

Then:

2+2cos 2 theta = 2+2(2cos^2 theta - 1) = 4cos^2 theta

So:

sqrt(2+2cos 2 theta) = sqrt(4 cos^2 theta) = abs(2 cos theta)

So if cos theta >= 0 then:

sqrt(2+2cos 2 theta) = 2 cos theta

So we have shown that provided all of:

  • cos 4 theta >= 0

  • cos 2 theta >= 0

  • cos theta >= 0

then:

sqrt(2+sqrt(2+sqrt(2+2cos 8 theta))) = 2 cos theta

These conditions will be satisfied for theta in [-pi/8, pi/8]