Prove that? #sqrt(2+sqrt(2+sqrt(2+2cos8theta# = #2costheta#
2 Answers
Explanation:
As
i.e.
Hence
=
=
=
=
=
=
=
=
=
The identity is false in general, but true for
Explanation:
The given identity does not hold in general.
For example, with
#sqrt(2+sqrt(2+sqrt(2+2cos8 theta)))#
#=sqrt(2+sqrt(2+sqrt(2+2cos((4pi)/3))))#
#=sqrt(2+sqrt(2+sqrt(2+2(-1/2))))#
#=sqrt(2+sqrt(2+sqrt(1)))#
#=sqrt(2+sqrt(3)) ~~ 1.932#
But:
#2 cos(theta) = 2 cos(pi/6) = 2 (sqrt(3)/2) = sqrt(3) ~~ 1.732#
What is true?
A double angle formula for
#cos 2theta = 2 cos^2 theta - 1#
So:
#cos 8 theta = 2 cos^2 4theta - 1#
and:
#2+2cos 8 theta = 2+2(2 cos^2 4theta - 1) = 4 cos^2 4 theta#
So:
#sqrt(2+2cos 8 theta) = sqrt(4 cos^2 4 theta) = abs(2 cos 4theta)#
So if
#sqrt(2+2cos 8 theta) = 2 cos 4 theta#
Then:
#2+2cos 4 theta = 2+2(2cos^2 2 theta - 1) = 4 cos^2 2 theta#
So:
#sqrt(2+2cos 4 theta) = sqrt(4 cos^2 2 theta) = abs(2cos 2 theta)#
So if
#sqrt(2+2cos 4 theta) = 2cos 2 theta#
Then:
#2+2cos 2 theta = 2+2(2cos^2 theta - 1) = 4cos^2 theta#
So:
#sqrt(2+2cos 2 theta) = sqrt(4 cos^2 theta) = abs(2 cos theta)#
So if
#sqrt(2+2cos 2 theta) = 2 cos theta#
So we have shown that provided all of:
-
#cos 4 theta >= 0# -
#cos 2 theta >= 0# -
#cos theta >= 0#
then:
#sqrt(2+sqrt(2+sqrt(2+2cos 8 theta))) = 2 cos theta#
These conditions will be satisfied for