Prove (1+cos2x+isin2x1+cos2xisin2x)n=cos2nx+isin2nx?

Prove ((1 + cos2 x + i sin2 x)/(1 + cos2 x - i sin2 x))^n=cos2nx+isin2nx ?

Thanks!

2 Answers
Dec 17, 2017

Explanation is below

Explanation:

1+cos2x+isin2x1+cos2xisin2x

=2(cosx)2+2isinxcosx2(cosx)22isinxcosx

=2cosx(cosx+isinx)2cosx(cosxisinx)

=cosx+isinxcosxisinx

=(cosx+isinx)2(cosxisinx)(cosx+isinx)

=(cosx)2(sinx)2+2isinxcosx(cosx)2+(sinx)2

=cos2x+isin2x1

=cos2x+isin2x

Thus,

[1+cos2x+isin2x1+cos2xisin2x]n

=(cos2x+isin2x)n

=cos(2nx)+isin(2nx)

Dec 17, 2017

See below.

Explanation:

1+ei2x=eix(eix+eix)
1+ei2x=eix(eix+eix) so

(1+ei2x1+ei2x)n=(ei2x)n=ei2nx=cos(2nx)+isin(2nx)

NOTE

We were using the de Moivre's identity

eiϕ=cosϕ+isinϕ