Points A and B are at #(3 ,7 )# and #(6 ,1 )#, respectively. Point A is rotated counterclockwise about the origin by #pi/2 # and dilated about point C by a factor of #3 #. If point A is now at point B, what are the coordinates of point C?

1 Answer
Aug 15, 2017

#C(-27/2,4)#

Explanation:

#"under a counterclockwise rotation about the origin of "pi/2#

#• " a point "(x,y)to(-y,x)#

#rArra(3,7)toA'(-7,3)" where A' is the image of A"#

#"under a dilatation about C of factor 3"#

#vec(CB)=color(red)(3)vec(CA')#

#rArrulb-ulc=color(red)(3)(ula'-ulc)#

#rArrulb-ulc=3ula'-3ulc#

#rArr2ulc=3ula'-ulb#

#color(white)(2ulcxxx)=3((-7),(3))-((6),(1))#

#color(white)(xxxxx)=((-21),(9))-((6),(1))=((-27),(8))#

#rArrulc=1/2((-27),(8))=((-27/2),(4))#

#rArrC=(-27/2,4)#