Please, give me an example #f:NNxxNN\toNN# #f# is a bijection ?
2 Answers
Please see below
Explanation:
Here ,
We take ,
#f(x,x)=(x+x)/2=x ,x inNN#
#f(1,1)=(1+1)/2=1#
#f(2,2)=(2+2)/2=2#
#f(3,3)=(3+3)/2=3#
#f(4,4)=(4+4)/2=4#
#color(white)(..)vdots# #vdotscolor(white)(...)vdotscolor(white)(....)vdotscolor(white)(.)vdots#
#f(n,n)=(n+n)/2=n# , where ,#n in NN#
#color(white)(..)vdots# #vdotscolor(white)(...)vdotscolor(white)(....)vdotscolor(white)(.)vdots#
Co-domain of
#.# Range of#color(blue)(f=R_f=NN#
Explanation:
I will assume that
Consider the triangular numbers:
#T_0 = 0#
#T_1 = 1#
#T_2 = 1+2 = 3#
#T_3 = 1+2+3 = 6#
...
#T_n = sum_(k=1)^n k = 1/2n(n+1)#
We can define:
#f(m, n) = T_(m+n)+n = 1/2(m+n)(m+n+1)+n#
#color(white)(f(m, n)) = 1/2(m^2+n^2+2mn+m+3n)#
This tells you the
#(0, 0), (1, 0), (0, 1), (2, 0), (1, 1), (0, 2), (3, 0), (2, 1), (1, 2), (0, 3),...#
which enumerates the points of
Footnote
If you want a bijection from
#g(m, n) = f(m-1, n-1)+1#
and simplify.