P_1(1+r)^2 + P_2(1+r) = A for r?

1 Answer

r=(-P_2 \pm sqrt(P_2^2+4P_1A)) / (2P_1) -1

Explanation:

Notice that if we subtract A from both sides and substitute in R for (1+r), ew get something familiar:

P_1R^2+P_2R-A=0

We can now use the quadratic formula:

R = (-b \pm sqrt(b^2-4ac)) / (2a)

R = (-P_2 \pm sqrt(P_2^2-4P_1(-A))) / (2(P_1))

R =r+1= (-P_2 \pm sqrt(P_2^2+4P_1A)) / (2P_1)

:.r=(-P_2 \pm sqrt(P_2^2+4P_1A)) / (2P_1) -1