MATRICES: How you determine x and y so that ... ?
((0,x),(x,y))² = ((x,x),(x,x+y))
1 Answer
We have four possible solution
x=0, y=0
x=0, y=1
x=1, y=0
x=1, y=1
Explanation:
We seek
( (0,x),(x,y) )^2 = ( (x,x),(x,x+y) )
And so:
( (0,x),(x,y) ) ( (0,x),(x,y) ) = ( (x,x),(x,x+y) )
So then multiplying the two matrices together we have:
( (0+x^2,0+xy),(0+xy,x^2+y^2) ) = ( (x,x),(x,x+y) )
:. ( (x^2,xy),(xy,x^2+y^2) ) = ( (x,x),(x,x+y) )
If we equate elements we get four equations:
[A]: x^2 = x
[B]: xy = x
[C]: xy = x
[D]: x^2+y^2 = x+y
From Equation [A] we have:
x^2=x => x^2-x= 0
:. x(x-1)= 0
:. x=0,1
From Equation [B] (identical to [C]) we get:
xy = x => xy - x =0
:. x(y-1) = 0
:. x=0,y=1
From Equation [D] we get:
x^2+y^2 = x+y
When
When
When
Thus, we have four possible solution
x=0, y=0
x=0, y=1
x=1, y=0
x=1, y=1