MATRICES: How you determine x and y so that ... ?

((0,x),(x,y))² = ((x,x),(x,x+y))

1 Answer
Oct 10, 2017

We have four possible solution

x=0, y=0
x=0, y=1
x=1, y=0
x=1, y=1

Explanation:

We seek x and y such that:

( (0,x),(x,y) )^2 = ( (x,x),(x,x+y) )

And so:

( (0,x),(x,y) ) ( (0,x),(x,y) ) = ( (x,x),(x,x+y) )

So then multiplying the two matrices together we have:

( (0+x^2,0+xy),(0+xy,x^2+y^2) ) = ( (x,x),(x,x+y) )

:. ( (x^2,xy),(xy,x^2+y^2) ) = ( (x,x),(x,x+y) )

If we equate elements we get four equations:

[A]: x^2 = x
[B]: xy = x
[C]: xy = x
[D]: x^2+y^2 = x+y

From Equation [A] we have:

x^2=x => x^2-x= 0
:. x(x-1)= 0
:. x=0,1

From Equation [B] (identical to [C]) we get:

xy = x => xy - x =0
:. x(y-1) = 0
:. x=0,y=1

From Equation [D] we get:

x^2+y^2 = x+y

When x=0=> y^2=y => y(y-1) = 0 => y=0,1
When x=1=> 1+y^2=1+y => y^2=y => y=0,1
When y=1=> x^2+1=x+1 => x^2=x => x=0,1

Thus, we have four possible solution

x=0, y=0
x=0, y=1
x=1, y=0
x=1, y=1