log_11(2x-1)=1-log_11(x+4)log11(2x−1)=1−log11(x+4)
=>log_11(2x-1)+log_11(x+4)=1⇒log11(2x−1)+log11(x+4)=1
=>log_11[(2x-1)(x+4)]=log_11 11⇒log11[(2x−1)(x+4)]=log1111
=>(2x-1)(x+4)]= 11⇒(2x−1)(x+4)]=11
=>2x^2-x+8x-4- 11=0⇒2x2−x+8x−4−11=0
=>2x^2+7x-15=0⇒2x2+7x−15=0
=>2x^2+10x-3x-15=0⇒2x2+10x−3x−15=0
=>2x(x+5)-3(x+5)=0⇒2x(x+5)−3(x+5)=0
=>(x+5)(2x-3)=0⇒(x+5)(2x−3)=0
So x=-5 and x=3/2x=−5andx=32
But x=-5x=−5 is not valid for the given equation log_11(2x-1)=1-log_11(x+4)log11(2x−1)=1−log11(x+4)
Hence x=3/2x=32