lim(x->0) sin(x)*sin(1/x) solve the limit?

1 Answer

0

Explanation:

Notice, that -1\le \sin\theta\le 1\ \forall \ \ \theta\in \mathbb R

\therefore -1\le \sin(1/x)\le 1\ \forall \ \ x\in \mathbb R

Given that

\lim_{x\to 0}\sin x\cdot \sin(1/x)

=\lim_{x\to 0}\sin x\cdot \lim_{x\to 0}\sin(1/x)

=0\cdot (k)\ \quad (\text{where}, \ -1\le k\le 1)

=0