Lim x—> 0 (1-cos4x)/(1-cos5x) Answer The Value ?

1 Answer
Jun 5, 2018

L=lim_(x->0)(1-cos(4x))/(1-cos(5x))=16/25

Explanation:

We want to solve

L=lim_(x->0)(1-cos(4x))/(1-cos(5x))

Which is an indeterminate form 0/0

So we can apply L'Hôpital's rule

color(blue)(lim_(x->c)f(x)/g(x)=lim_(x->c)(f'(x))/(g'(x))

Thus

L=lim_(x->0)(4sin(4x))/(5sin(5x))

Again an indeterminate form 0/0, so apply LHR again

L=lim_(x->0)(4*4*cos(4x))/(5*5*cos(5x))=16/25