Lim x—> 0 (1-cos4x)/(1-cos5x) Answer The Value ?
1 Answer
Jun 5, 2018
Explanation:
We want to solve
L=lim_(x->0)(1-cos(4x))/(1-cos(5x))
Which is an indeterminate form
So we can apply L'Hôpital's rule
color(blue)(lim_(x->c)f(x)/g(x)=lim_(x->c)(f'(x))/(g'(x))
Thus
L=lim_(x->0)(4sin(4x))/(5sin(5x))
Again an indeterminate form
L=lim_(x->0)(4*4*cos(4x))/(5*5*cos(5x))=16/25