If we have two complex numbers #z_1=r_1(cosalpha+isinalpha)# and #z_2=r_2(cosbeta+isinbeta)#
#z_1xxz_2=r_1r_2(cosalphacosbeta+icosalphasinbeta+isinalphacosbeta+i^2sinalphasinbeta)#
or
#z_1xxz_2=r_1r_2((cosalphacosbeta-sinalphasinbeta)+i(cosalphasinbeta+sinalphacosbeta)#
or
#z_1xxz_2=r_1r_2(cos(alpha+beta)+isin(alpha+beta))#
Here we have #z_1=2(cos((5pi)/6)+isin((5pi)/6))# and #z_2=5(cos(pi/3)+isin(pi/3)#
and #z_1xxz_2=2xx5(cos((5pi)/6+pi/3)+isin((5pi)/6+pi/3))#
= #10(cos((7pi)/6)+isin((7pi)/6))#
= #10(cos(pi+pi/6)+isin(pi+pi/6))#
= #10(-cos(pi/6)-isin(pi/6))#
= #-10(sqrt3/2+i/2)#
= #-5sqrt3-5i#