Let #j(x)=x^2# and #k(x)=x^3#, does #k(j(x))=j(k(x))#?
1 Answer
Yes
Explanation:
More generally...
If
#(x^m)^n = overbrace(x^m xx x^m xx ... xx x^m)^"n times"#
#color(white)((x^m)^n) = overbrace(overbrace((x xx x xx ... xx x))^"m times" xx overbrace((x xx x xx ... xx x))^"m times" xx ... xx overbrace((x xx x xx ... xx x))^"m times")^"n times"#
#color(white)((x^m)^n) = overbrace(x xx x xx ... xx x)^"mn times"#
#color(white)((x^m)^n) = x^(mn)#
So in particular:
#(x^m)^n = x^(mn) = x^(nm) = (x^n)^m#
Footnote
-
Any number
#x# (Real or complex), with#m, n# positive integers. -
Any non-zero number
#x# (Real or complex), with#m, n# any integers. -
Any positive (Real) number
#x# , with#m, n# any numbers.
It does not hold in all cases.
For example:
#-1 = (-1)^1 = (-1)^(3/2*2/3) != ((-1)^(3/2))^(2/3) = (-i)^(2/3) = 1/2-sqrt(3)/2i#