Let #D= a^2+b^2+c^2# where a and b are successive positive integers and #c=ab#.How will you show that #sqrtD# is an odd positive integer?
1 Answer
Jun 20, 2016
Explanation:
Given
#b = a + 1#
#c = ab = a(a+1)#
So:
#D = a^2+(a+1)^2+(a(a+1))^2#
#=a^2+(a^2+2a+1)+a^2(a^2+2a+1)#
#=a^4+2a^3+3a^2+2a+1#
#=(a^2+a+1)^2#
If
If